User-Profile-Image
hankin
  • 5
  • Java
  • Kotlin
  • Spring
  • Web
  • SQL
  • MegaData
  • More
  • Experience
  • Enamiĝu al vi
  • 分类
    • Zuul
    • Zookeeper
    • XML
    • WebSocket
    • Web Notes
    • Web
    • Vue
    • Thymeleaf
    • SQL Server
    • SQL Notes
    • SQL
    • SpringSecurity
    • SpringMVC
    • SpringJPA
    • SpringCloud
    • SpringBoot
    • Spring Notes
    • Spring
    • Servlet
    • Ribbon
    • Redis
    • RabbitMQ
    • Python
    • PostgreSQL
    • OAuth2
    • NOSQL
    • Netty
    • MySQL
    • MyBatis
    • More
    • MinIO
    • MegaData
    • Maven
    • LoadBalancer
    • Kotlin Notes
    • Kotlin
    • Kafka
    • jQuery
    • JavaScript
    • Java Notes
    • Java
    • Hystrix
    • Git
    • Gateway
    • Freemarker
    • Feign
    • Eureka
    • ElasticSearch
    • Docker
    • Consul
    • Ajax
    • ActiveMQ
  • 页面
    • 归档
    • 摘要
    • 杂图
    • 问题随笔
  • 友链
    • Spring Cloud Alibaba
    • Spring Cloud Alibaba - 指南
    • Spring Cloud
    • Nacos
    • Docker
    • ElasticSearch
    • Kotlin中文版
    • Kotlin易百
    • KotlinWeb3
    • KotlinNhooo
    • 前端开源搜索
    • Ktorm ORM
    • Ktorm-KSP
    • Ebean ORM
    • Maven
    • 江南一点雨
    • 江南国际站
    • 设计模式
    • 熊猫大佬
    • java学习
    • kotlin函数查询
    • Istio 服务网格
    • istio
    • Ktor 异步 Web 框架
    • PostGis
    • kuangstudy
    • 源码地图
    • it教程吧
    • Arthas-JVM调优
    • Electron
    • bugstack虫洞栈
    • github大佬宝典
    • Sa-Token
    • 前端技术胖
    • bennyhuo-Kt大佬
    • Rickiyang博客
    • 李大辉大佬博客
    • KOIN
    • SQLDelight
    • Exposed-Kt-ORM
    • Javalin—Web 框架
    • http4k—HTTP包
    • 爱威尔大佬
    • 小土豆
    • 小胖哥安全框架
    • 负雪明烛刷题
    • Kotlin-FP-Arrow
    • Lua参考手册
    • 美团文章
    • Java 全栈知识体系
    • 尼恩架构师学习
    • 现代 JavaScript 教程
    • GO相关文档
    • Go学习导航
    • GoCN社区
    • GO极客兔兔-案例
    • 讯飞星火GPT
    • Hollis博客
    • PostgreSQL德哥
    • 优质博客推荐
    • 半兽人大佬
    • 系列教程
    • PostgreSQL文章
    • 云原生资料库
    • 并发博客大佬
Help?

Please contact us on our email for need any support

Support
    首页   ›   Java   ›   正文
Java

Java—并发编程(二)synchronized关键字

2021-08-11 16:51:14
591  0 1
参考目录 隐藏
1) 1. synchronized原理
2) 2.synchronized基本规则
3) 3. synchronized方法 和 synchronized代码块、 synchronized 静态方法
4) 4. 实例锁 和 全局锁

阅读完需:约 20 分钟

1. synchronized原理

在java中,每一个对象有且仅有一个同步锁。这也意味着,同步锁是依赖于对象而存在。
当我们调用某对象的synchronized方法时,就获取了该对象的同步锁。例如,synchronized(obj)就获取了“obj这个对象”的同步锁。
不同线程对同步锁的访问是互斥的。也就是说,某时间点,对象的同步锁只能被一个线程获取到!通过同步锁,我们就能在多线程中,实现对“对象/方法”的互斥访问。 例如,现在有两个线程A和线程B,它们都会访问“对象obj的同步锁”。假设,在某一时刻,线程A获取到“obj的同步锁”并在执行一些操作;而此时,线程B也企图获取“obj的同步锁” —— 线程B会获取失败,它必须等待,直到线程A释放了“该对象的同步锁”之后线程B才能获取到“obj的同步锁”从而才可以运行。

2.synchronized基本规则

  1. 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的该“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
  2. 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程仍然可以访问“该对象”的非同步代码块。
  3. 当一个线程访问“某对象”的“synchronized方法”或者“synchronized代码块”时,其他线程对“该对象”的其他的“synchronized方法”或者“synchronized代码块”的访问将被阻塞。
  4. 当一个线程执行的代码出现异常时,其所持有的锁会自动释放

synchronized的底层实现
JDK早期的 重量级 – OS
后来的改进
锁升级的概念

sync (Object)
markword 记录这个线程ID (偏向锁)
如果线程争用:升级为 自旋锁
10次以后,
升级为重量级锁 – OS

轻量级锁加锁:线程在执行同步块之前, JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的Mark Word复制到锁记录中,
官方称为Displaced Mark Word。然后线程尝试使用 CAS 将对象头中的Mark Word替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。如果有两条以上的线程争用同一个锁,那轻量级锁就不再有效,要膨胀为重量级锁,锁标志的状态值变为”10”,Mark Word中存储的就是指向重量级(互斥量)的指针。

轻量级锁解锁:轻量级解锁时,会使用原子的 CAS 操作来将Displaced Mark Word替换回到对象头,如果成功,则表示没有竞争发生。如果失败,表示当前锁存在竞争,锁就会膨胀成重量级锁。

轻量级锁认为竞争存在,但是竞争的程度很轻,一般两个线程对于同一个锁的操作都会错开,或者说稍微等待一下(自旋),另一个线程就会释放锁。 但是当自旋超过一定的次数,或者一个线程在持有锁,一个在自旋,又有第三个来访时,轻量级锁膨胀为重量级锁,重量级锁使除了拥有锁的线程以外的线程都阻塞,防止CPU空转。

执行时间短(加锁代码),线程数少,用自旋
执行时间长,线程数多,用系统锁


对应第一条:

class MyRunable implements Runnable {

    @Override
    public void run() {
        synchronized(this) {
            try {
                for (int i = 0; i < 5; i++) {
                    Thread.sleep(100); // 休眠100ms
                    System.out.println(Thread.currentThread().getName() + " loop " + i);
                }
            } catch (InterruptedException ie) {
            }
        }
    }
}

public class Demo1_1 {

    public static void main(String[] args) {
        Runnable demo = new MyRunable();     // 新建“Runnable对象”

        Thread t1 = new Thread(demo, "t1");  // 新建“线程t1”, t1是基于demo这个Runnable对象
        Thread t2 = new Thread(demo, "t2");  // 新建“线程t2”, t2是基于demo这个Runnable对象
        t1.start();                          // 启动“线程t1”
        t2.start();                          // 启动“线程t2”
    }
}

运行结果:

t1 loop 0
t1 loop 1
t1 loop 2
t1 loop 3
t1 loop 4
t2 loop 0
t2 loop 1
t2 loop 2
t2 loop 3
t2 loop 4

结果说明:
run()方法中存在“synchronized(this)代码块”,而且t1和t2都是基于”demo这个Runnable对象”创建的线程。这就意味着,我们可以将synchronized(this)中的this看作是“demo这个Runnable对象”;因此,线程t1和t2共享“demo对象的同步锁”。所以,当一个线程运行的时候,另外一个线程必须等待“运行线程”释放“demo的同步锁”之后才能运行。

如果你确认,你搞清楚这个问题了。那我们将上面的代码进行修改,然后再运行看看结果怎么样,看看你是否会迷糊。修改后的源码如下:

class MyThread extends Thread {

    public MyThread(String name) {
        super(name);
    }

    @Override
    public void run() {
        synchronized(this) {
            try {
                for (int i = 0; i < 5; i++) {
                    Thread.sleep(100); // 休眠100ms
                    System.out.println(Thread.currentThread().getName() + " loop " + i);
                }
            } catch (InterruptedException ie) {
            }
        }
    }
}

public class Demo1_2 {

    public static void main(String[] args) {
        Thread t1 = new MyThread("t1");  // 新建“线程t1”
        Thread t2 = new MyThread("t2");  // 新建“线程t2”
        t1.start();                          // 启动“线程t1”
        t2.start();                          // 启动“线程t2”
    }
}

比较Demo1_2 和 Demo1_1,我们发现,Demo1_2中的MyThread类是直接继承于Thread,而且t1和t2都是MyThread子线程。

幸运的是,在“Demo1_2的run()方法”也调用了synchronized(this),正如“Demo1_1的run()方法”也调用了synchronized(this)一样!
那么,Demo1_2的执行流程是不是和Demo1_1一样呢?

t1 loop 0
t2 loop 0
t1 loop 1
t2 loop 1
t1 loop 2
t2 loop 2
t1 loop 3
t2 loop 3
t1 loop 4
t2 loop 4

如果这个结果一点也不令你感到惊讶,那么我相信你对synchronized和this的认识已经比较深刻了。

synchronized(this)中的this是指“当前的类对象”,即synchronized(this)所在的类对应的当前对象。它的作用是获取“当前对象的同步锁”。
对于Demo1_2中,synchronized(this)中的this代表的是MyThread对象,而t1和t2是两个不同的MyThread对象,因此t1和t2在执行synchronized(this)时,获取的是不同对象的同步锁。对于Demo1_1对而言,synchronized(this)中的this代表的是MyRunable对象;t1和t2共同一个MyRunable对象,因此,一个线程获取了对象的同步锁,会造成另外一个线程等待。

注意:关键字synchronized取得的锁都是对象锁,而不是把一段代码或方法(函数)当作锁,哪个线程先执行带synchronized关键字的方法,哪个线程就持有该方法所属对象的锁,其他线程都只能呈等待状态。但是这有个前提:既然锁叫做对象锁,那么势必和对象相关,所以多个线程访问的必须是同一个对象。


对应第二条:

class Count {

    // 含有synchronized同步块的方法
    public void synMethod() {
        synchronized(this) {
            try {
                for (int i = 0; i < 5; i++) {
                    Thread.sleep(100); // 休眠100ms
                    System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
                }
            } catch (InterruptedException ie) {
            }
        }
    }

    // 非同步的方法
    public void nonSynMethod() {
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100);
                System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
            }
        } catch (InterruptedException ie) {
        }
    }
}

public class Demo2 {

    public static void main(String[] args) {
        final Count count = new Count();
        // 新建t1, t1会调用“count对象”的synMethod()方法
        Thread t1 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        count.synMethod();
                    }
                }, "t1");

        // 新建t2, t2会调用“count对象”的nonSynMethod()方法
        Thread t2 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        count.nonSynMethod();
                    }
                }, "t2");


        t1.start();  // 启动t1
        t2.start();  // 启动t2
    }
}

运行结果:

t1 synMethod loop 0
t2 nonSynMethod loop 0
t1 synMethod loop 1
t2 nonSynMethod loop 1
t1 synMethod loop 2
t2 nonSynMethod loop 2
t1 synMethod loop 3
t2 nonSynMethod loop 3
t1 synMethod loop 4
t2 nonSynMethod loop 4

结果说明:

主线程中新建了两个子线程t1和t2。t1会调用count对象的synMethod()方法,该方法内含有同步块;而t2则会调用count对象的nonSynMethod()方法,该方法不是同步方法。t1运行时,虽然调用synchronized(this)获取“count的同步锁”;但是并没有造成t2的阻塞,因为t2没有用到“count”同步锁。


对应第三条:

class Count {

    // 含有synchronized同步块的方法
    public void synMethod() {
        synchronized(this) {
            try {
                for (int i = 0; i < 5; i++) {
                    Thread.sleep(100); // 休眠100ms
                    System.out.println(Thread.currentThread().getName() + " synMethod loop " + i);
                }
            } catch (InterruptedException ie) {
            }
        }
    }

    // 也包含synchronized同步块的方法
    public void nonSynMethod() {
        synchronized(this) {
            try {
                for (int i = 0; i < 5; i++) {
                    Thread.sleep(100);
                    System.out.println(Thread.currentThread().getName() + " nonSynMethod loop " + i);
                }
            } catch (InterruptedException ie) {
            }
        }
    }
}

public class Demo3 {

    public static void main(String[] args) {
        final Count count = new Count();
        // 新建t1, t1会调用“count对象”的synMethod()方法
        Thread t1 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        count.synMethod();
                    }
                }, "t1");

        // 新建t2, t2会调用“count对象”的nonSynMethod()方法
        Thread t2 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        count.nonSynMethod();
                    }
                }, "t2");


        t1.start();  // 启动t1
        t2.start();  // 启动t2
    }
}

运行结果:

t1 synMethod loop 0
t1 synMethod loop 1
t1 synMethod loop 2
t1 synMethod loop 3
t1 synMethod loop 4
t2 nonSynMethod loop 0
t2 nonSynMethod loop 1
t2 nonSynMethod loop 2
t2 nonSynMethod loop 3
t2 nonSynMethod loop 4

结果说明:

主线程中新建了两个子线程t1和t2。t1和t2运行时都调用synchronized(this),这个this是Count对象(count),而t1和t2共用count。因此,在t1运行时,t2会被阻塞,等待t1运行释放“count对象的同步锁”,t2才能运行。


对应第四条:

public class T {
	int count = 0;
	synchronized void m() {
		System.out.println(Thread.currentThread().getName() + " start");
		while(true) {
			count ++;
			System.out.println(Thread.currentThread().getName() + " count = " + count);
			try {
				TimeUnit.SECONDS.sleep(1);
				
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
			
			if(count == 5) {
				int i = 1/0; //此处抛出异常,锁将被释放,要想不被释放,可以在这里进行catch,然后让循环继续
				System.out.println(i);
			}
		}
	}
	
	public static void main(String[] args) {
		T t = new T();
		Runnable r = new Runnable() {

			@Override
			public void run() {
				t.m();
			}
			
		};
		new Thread(r, "t1").start();
		
		try {
			TimeUnit.SECONDS.sleep(3);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
		
		new Thread(r, "t2").start();
	}
	
}

运行结果:

t1 start
t1 count = 1
t1 count = 2
t1 count = 3
t1 count = 4
t1 count = 5
t2 start
t2 count = 6
Exception in thread "t1" java.lang.ArithmeticException: / by zero
	at com.mashibing.juc.c_011.T.m(T.java:28)
	at com.mashibing.juc.c_011.T$1.run(T.java:40)
	at java.lang.Thread.run(Thread.java:748)
t2 count = 7
t2 count = 8
t2 count = 9
t2 count = 10
t2 count = 11
t2 count = 12
t2 count = 13
t2 count = 14
t2 count = 15

t1线程获得了锁,但是一旦出现异常就会释放锁,所以t2线程获取了锁。


3. synchronized方法 和 synchronized代码块、 synchronized 静态方法

“synchronized方法”是用synchronized修饰方法,而 “synchronized代码块”则是用synchronized修饰代码块。

synchronized方法示例

public synchronized void foo1() {
    System.out.println("synchronized methoed");
}

synchronized代码块

public void foo2() {
    synchronized (this) {
        System.out.println("synchronized methoed");
    }
}

synchronized代码块中的this是指当前对象。也可以将this替换成其他对象,例如将this替换成obj,则foo2()在执行synchronized(obj)时就获取的是obj的同步锁。

synchronized代码块可以更精确的控制冲突限制访问区域,有时候表现更高效率。下面通过一个示例来演示:

// Demo4.java的源码
public class Demo4 {

    public synchronized void synMethod() {
        for(int i=0; i<1000000; i++)
            ;
    }

    public void synBlock() {
        synchronized( this ) {
            for(int i=0; i<1000000; i++)
                ;
        }
    }

    public static void main(String[] args) {
        Demo4 demo = new Demo4();

        long start, diff;
        start = System.currentTimeMillis();                // 获取当前时间(millis)
        demo.synMethod();                                // 调用“synchronized方法”
        diff = System.currentTimeMillis() - start;        // 获取“时间差值”
        System.out.println("synMethod() : "+ diff);

        start = System.currentTimeMillis();                // 获取当前时间(millis)
        demo.synBlock();                                // 调用“synchronized方法块”
        diff = System.currentTimeMillis() - start;        // 获取“时间差值”
        System.out.println("synBlock()  : "+ diff);
    }
}

运行结果:

synMethod() : 11
synBlock() : 3

synchronized 静态方法实例

public synchronized static void printA(){
   ...................................
}

如果这么写,则代表的是对当前.java文件对应的Class类加锁

public class ThreadDomain25
{
    public synchronized static void printA()
    {
        try
        {
            System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                    "在" + System.currentTimeMillis() + "进入printA()方法");
            Thread.sleep(3000);
            System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                    "在" + System.currentTimeMillis() + "离开printA()方法");
        }
        catch (InterruptedException e)
        {
            e.printStackTrace();
        }
    }
    
    public synchronized static void printB()
    {
        System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                "在" + System.currentTimeMillis() + "进入printB()方法");
        System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                "在" + System.currentTimeMillis() + "离开printB()方法");

    }
    
    public synchronized void printC()
    {
        System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                "在" + System.currentTimeMillis() + "进入printC()方法");
        System.out.println("线程名称为:" + Thread.currentThread().getName() + 
                "在" + System.currentTimeMillis() + "离开printC()方法");
    }
}

写三个线程分别调用这三个方法:

public class MyThread25_0 extends Thread
{
    public void run()
    {
        ThreadDomain25.printA();
    }
}

public class MyThread25_1 extends Thread
{
    public void run()
    {
        ThreadDomain25.printB();
    }
}

public class MyThread25_2 extends Thread
{
    private ThreadDomain25 td;
    
    public MyThread25_2(ThreadDomain25 td)
    {
        this.td = td;
    }
    
    public void run()
    {
        td.printC();
    }
}

public static void main(String[] args)
{
    ThreadDomain25 td = new ThreadDomain25();
    MyThread25_0 mt0 = new MyThread25_0();
    MyThread25_1 mt1 = new MyThread25_1();
    MyThread25_2 mt2 = new MyThread25_2(td);
    mt0.start();
    mt1.start();
    mt2.start();
}

运行结果:

线程名称为:Thread-0在1443857019710进入printA()方法
线程名称为:Thread-2在1443857019710进入printC()方法
线程名称为:Thread-2在1443857019710离开printC()方法
线程名称为:Thread-0在1443857022710离开printA()方法
线程名称为:Thread-1在1443857022710进入printB()方法
线程名称为:Thread-1在1443857022710离开printB()方法

从运行结果来,对printC()方法的调用和对printA()方法、printB()方法的调用时异步的,这说明了静态同步方法和非静态同步方法持有的是不同的锁,前者是类锁,后者是对象锁。

静态方法前加synchronized这个锁等价于锁住了当前类的class对象,因为静态方法或者是静态关键字在本质上是一个类对象,而不是成员对象,在内存中位于方法区被所有的实例共享。即等同于synchronized(Shop.class)。我们需要注意的是锁住了类并不代表锁住了类所在的对象,类本身也是一种对象。它与类的实例是完全不同的两个对象,在加锁时不是相互依赖的,即对类加锁并不与上面例子中的加锁互斥,锁住了子类或子类的对象与锁住父类或父类的对象是不相关的。


4. 实例锁 和 全局锁

实例锁 — 锁在某一个实例对象上。如果该类是单例,那么该锁也具有全局锁的概念。实例锁对应的就是synchronized关键字。

全局锁 — 该锁针对的是类,无论实例多少个对象,那么线程都共享该锁。全局锁对应的就是static synchronized(或者是锁在该类的class或者classloader对象上)。

关于“实例锁”和“全局锁”有一个很形象的例子:

pulbic class Something {
    public synchronized void isSyncA(){}
    public synchronized void isSyncB(){}
    public static synchronized void cSyncA(){}
    public static synchronized void cSyncB(){}
}

假设,Something有两个实例x和y。分析下面4组表达式获取的锁的情况。
(01) x.isSyncA()与x.isSyncB()
(02) x.isSyncA()与y.isSyncA()
(03) x.cSyncA()与y.cSyncB()
(04) x.isSyncA()与Something.cSyncA()

其实就是锁对象与锁类的组合

1、不能被同时访问

因为isSyncA()和isSyncB()都是访问同一个对象(对象x)的同步锁!

// LockTest1.java的源码
class Something {
    public synchronized void isSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public synchronized void isSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
}

public class LockTest1 {

    Something x = new Something();
    Something y = new Something();

    // 比较(01) x.isSyncA()与x.isSyncB()
    private void test1() {
        // 新建t11, t11会调用 x.isSyncA()
        Thread t11 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        x.isSyncA();
                    }
                }, "t11");

        // 新建t12, t12会调用 x.isSyncB()
        Thread t12 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        x.isSyncB();
                    }
                }, "t12");


        t11.start();  // 启动t11
        t12.start();  // 启动t12
    }

    public static void main(String[] args) {
        LockTest1 demo = new LockTest1();
        demo.test1();
    }
}

运行结果:

t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t11 : isSyncA
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB
t12 : isSyncB

2、可以同时被访问

因为访问的不是同一个对象的同步锁,x.isSyncA()访问的是x的同步锁,而y.isSyncA()访问的是y的同步锁。

// LockTest2.java的源码
class Something {
    public synchronized void isSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public synchronized void isSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
}

public class LockTest2 {

    Something x = new Something();
    Something y = new Something();

    // 比较(02) x.isSyncA()与y.isSyncA()
    private void test2() {
        // 新建t21, t21会调用 x.isSyncA()
        Thread t21 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        x.isSyncA();
                    }
                }, "t21");

        // 新建t22, t22会调用 x.isSyncB()
        Thread t22 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        y.isSyncA();
                    }
                }, "t22");


        t21.start();  // 启动t21
        t22.start();  // 启动t22
    }

    public static void main(String[] args) {
        LockTest2 demo = new LockTest2();

        demo.test2();
    }
}

运行结果:

t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA
t21 : isSyncA
t22 : isSyncA

3、不能被同时访问

因为cSyncA()和cSyncB()都是static类型,x.cSyncA()相当于Something.isSyncA(),y.cSyncB()相当于Something.isSyncB(),因此它们共用一个同步锁,不能被同时反问。

// LockTest3.java的源码
class Something {
    public synchronized void isSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public synchronized void isSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
}

public class LockTest3 {

    Something x = new Something();
    Something y = new Something();

    // 比较(03) x.cSyncA()与y.cSyncB()
    private void test3() {
        // 新建t31, t31会调用 x.isSyncA()
        Thread t31 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        x.cSyncA();
                    }
                }, "t31");

        // 新建t32, t32会调用 x.isSyncB()
        Thread t32 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        y.cSyncB();
                    }
                }, "t32");


        t31.start();  // 启动t31
        t32.start();  // 启动t32
    }

    public static void main(String[] args) {
        LockTest3 demo = new LockTest3();

        demo.test3();
    }
}

运行结果:

t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t31 : cSyncA
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB
t32 : cSyncB

4、可以被同时访问

因为isSyncA()是实例方法,x.isSyncA()使用的是对象x的锁;而cSyncA()是静态方法,Something.cSyncA()可以理解对使用的是“类的锁”。因此,它们是可以被同时访问的。

// LockTest4.java的源码
class Something {
    public synchronized void isSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public synchronized void isSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : isSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncA(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncA");
            }
        }catch (InterruptedException ie) {
        }
    }
    public static synchronized void cSyncB(){
        try {
            for (int i = 0; i < 5; i++) {
                Thread.sleep(100); // 休眠100ms
                System.out.println(Thread.currentThread().getName()+" : cSyncB");
            }
        }catch (InterruptedException ie) {
        }
    }
}

public class LockTest4 {

    Something x = new Something();
    Something y = new Something();

    // 比较(04) x.isSyncA()与Something.cSyncA()
    private void test4() {
        // 新建t41, t41会调用 x.isSyncA()
        Thread t41 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        x.isSyncA();
                    }
                }, "t41");

        // 新建t42, t42会调用 x.isSyncB()
        Thread t42 = new Thread(
                new Runnable() {
                    @Override
                    public void run() {
                        Something.cSyncA();
                    }
                }, "t42");


        t41.start();  // 启动t41
        t42.start();  // 启动t42
    }

    public static void main(String[] args) {
        LockTest4 demo = new LockTest4();

        demo.test4();
    }
}

运行结果:

t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA
t41 : isSyncA
t42 : cSyncA

如本文“对您有用”,欢迎随意打赏作者,让我们坚持创作!

1 打赏
Enamiĝu al vi
不要为明天忧虑.因为明天自有明天的忧虑.一天的难处一天当就够了。
543文章 68评论 294点赞 593951浏览

随机文章
Zookeeper—整理记录
10个月前
Kotlin-函数进阶—集合变换和序列(十七)
4年前
Axios的简单使用
5年前
Mysql—多表连接查询
5年前
Java—LinkedList
5年前
博客统计
  • 日志总数:543 篇
  • 评论数目:68 条
  • 建站日期:2020-03-06
  • 运行天数:1927 天
  • 标签总数:23 个
  • 最后更新:2024-12-20
Copyright © 2025 网站备案号: 浙ICP备20017730号 身体没有灵魂是死的,信心没有行为也是死的。
主页
页面
  • 归档
  • 摘要
  • 杂图
  • 问题随笔
博主
Enamiĝu al vi
Enamiĝu al vi 管理员
To be, or not to be
543 文章 68 评论 593951 浏览
测试
测试
看板娘
赞赏作者

请通过微信、支付宝 APP 扫一扫

感谢您对作者的支持!

 支付宝 微信支付